

MCP-003-001513

Seat No.

B. Sc. (Sem. V) (CBCS) Examination

May / June - 2018

Mathematics: Paper BSMT-501 (A)

(Theory) (Mathematical Analysis & Group Theory)

Faculty Code: 003

Subject Code: 001513

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

1 Answer the following questions:

- 20
- (1) Give an example of group which not abelian.
- (2) Define Automorphism.
- (3) Define Normal Subgroup.
- (4) Define Order of Group
- (5) Find generators of Cyclic Group $(Z_8, +_8)$
- (6) Define Right Coset.
- (7) Define Isomorphism of Group.
- (8) Define Factor Group.
- (9) Examine whether the following permutation is even or odd

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 3 & 5 & 2 & 6 & 8 & 1 & 7 \end{pmatrix}$$

- (10) Find 0(f) where $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 2 & 9 & 4 & 6 & 1 & 3 & 8 & 5 \end{pmatrix}$
- (11) If $f(x) = \frac{20}{x}$, $x \in [2, 20]$ and $P = \{2, 4, 5, 20\}$ be a partition then ||P|| is ______.

$$(12) \int_{-1}^{1} |x| \, dx = \underline{\qquad}.$$

- (13) State Darboux's Theorem.
- (14) Define Neighborhood of a point.
- (15) Define: Separable metric space.

- (16) If E = (1,2) is a subset of metric space R then E' =_____.
- (17) If (X, d) is discrete metric space and $1 < \delta$ then N (a, δ) = _____.
- (18) Define: Limit point.
- (19) Define: Isolated point.
- (20) Define: Countable Set.
- 2 (A) Attempt any three
 - (1) Define Upper Riemann Integration and Lower Riemann Integration.
 - (2) If function f is continuous in [a, b] then $f \in R_{[a,b]}$.
 - (3) Prove that $\frac{1}{2} < \int_{0}^{\frac{1}{2}} \frac{dx}{\sqrt{1-x^{2n}}} < \frac{\pi}{6}$.
 - (4) If (X, d) is a metric space and $A \subset B \subset X$ then prove that $A^{\circ} \subset B^{\circ}$.
 - (5) If $E_n = \left(\frac{1}{n}, \frac{n-1}{n}\right)$ then check subset $\bigcap_{n=3}^{\infty} E_n$ of metric

space R is open or closed.

- (6) Prove that every finite subset of metric space is closed.
- (B) Attempt any three:

(1) State and prove first mean value theorem of integral calculus.

- (2) Prove that $\lim_{n \to \infty} \left(\frac{n^n}{n!} \right)^{\frac{1}{n}} = e$.
- (3) If $f \in R_{[a,b]}$ then for $\lambda > 0, \lambda f \in R_{[a,b]}$.
- (4) State and prove Housedroff's Principle for a metric space.
- (5) Prove that $\frac{1}{4}$ is in cantor set.
- (6) If $A = \left\{ \frac{1}{n} + \frac{1}{m} / n, m \in \mathbb{N} \right\} \subset \mathbb{R}$ then find A'

6

9

(C) Attempt any two:

(1) Let f be bounded function on [a, b] then necessary and sufficient condition for

$$\int_{a}^{b} f(x)dx = \int_{a}^{\overline{b}} f(x)dx = \int_{\underline{a}}^{b} f(x)dx \text{ is } \lim_{\|P\| \to 0} S(P, f) \text{ exist}$$

and value of this limit is $\int_{a}^{b} f(x)dx$.

- (2) Let f be bounded function on [a,b]. P and P* are two partition of [a,b] such that $P \subset P^*$ then $L(P,f) \le L(P^*,f) \le U(P^*,f) \le U(P,f)$.
- (3) Prove that (R, d) is separable metric space.
- (4) Prove that any subset of discrete metric space is both open and closed.
- (5) If (X, d) is metric space then prove that $\left(X, \frac{d}{1+d}\right)$ is also a metric space.
- **3** (A) Attempt any three

6

- (1) Let (G, *) be a group then prove that $(a*b)^{-1} = b^{-1}*a^{-1}, \forall a, b \in G.$
- (2) If Binary operation * defined as $a*b = ab+1, \forall a, b \in G$, Is (G,*) group or not ?
- (3) Let G be group and a, b \in G such that a # e and O(b) = 2 if $bab^{-1} = a^2$, then find O(a).
- (4) Let $H \le G$ and $a, b \in G$, if $H_a = H_b$, then prove that $ab^{-1} \in H$.
- (5) If $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 3 & 1 & 2 & 4 \end{pmatrix}$ and

$$g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 2 & 4 & 6 & 1 \end{pmatrix}$$
, then find f_0g and g_0f .

(6) Prove that every cyclic group is abelian.

(B) Attempt any three:

9

- (1) Using Fermat's theorem, find the remainder when 3^{256} is divided by 14.
- (2) If $H \le G$ then show that $x^{-1}Hx = \left\{x^{-1}hx/h \in H\right\}$ is also subgroup of G; $\forall x \in G$.
- (3) Prove that composition of two disjoint cycles in S_n is commutative.
- (4) Show that a non empty subset H of group G is subgroup of G iff $ab^{-1} \in H, \forall a, b \in H$.
- (5) A subgroup H of G is Normal iff $x^{-1}hx \in H, \forall x \in G, \forall h \in H$.
- (6) Prove that the set of function $\{f_1, f_2, f_3, f_4\}$ on C define by $f_1(z) = z$, $f_2(z) = -z$, $f_3(z) = \frac{1}{z}$, $f_4(z) = \frac{-1}{z}$ forms an abelian group under binary operation composition.
- (C) Attempt any two

10

- (1) State and prove Lagrange's Theorem.
- (2) State and prove Cayley's Theorem.
- (3) Define Alternating Group A_n , Show that $A_n (n \ge 2)$ is a subgroup of S_n of order $\frac{n!}{2}$.
- (4) Prove that Isomorphism of group is an equivalent relation.
- (5) A subgroup H of group G is normal subgroup iff (H_a) $(H_b) = H_{ab}$; $\forall a, b \in G$.